
© 2006 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

perfmon2: a flexible
performance monitoring
interface for Linux

perfmon2: une interface
flexible pour l'analyse de
performance sous Linux

Stéphane Eranian
HP Labs
July 2006
Ottawa Linux Symposium 2006
Ottawa, Canada

August 6, 2006 2

Agenda

• What is performance monitoring?
• What is the PMU?
• What is the problem?
• Overview of the perfmon2 interface
• Status
• Existing tools
• Current & future work

August 6, 2006 3

What is performance monitoring?

The action of collecting information related to how an
application or system performs

• Information obtained by instrumenting the code
−extract program-level or system-level information
−statically: compilers (-pg option), explicit code (LTTng, Xenmon)
−dynamically (code rewrite): HP Caliper, Intel PIN tool, Kprobes
−example: count basic-block execution, number of ctxsw/s

• Information obtained from CPU/chipset
−extract micro-architectural level information
−exploit hardware performance counters
−example: count TLB misses, stall cycles, memory access latency

August 6, 2006 4

Why is monitoring important?
• Transparent HW improvements are slowing down
−multi-thread, multi-cores, NUMA instead of clock speed
−HW changes impact SW more than in the past

• SW compute needs are continuing to grow fast
• major SW evolutions necessary to better exploit HW
−example: SW must be multi-threaded for multi-core CPU

• Monitoring is key to detecting/solving problems
−where are the stalls, what's the memory bandwidth utilization?
−develop smart tools: must tell why and what to do about it?
−better monitoring HW: stall, cache analysis, bus utilization

August 6, 2006 5

What is the PMU?
• Piece of CPU HW collecting micro-architectural events:
−from pipeline, system bus, caches, ...

• All modern CPU have a PMU
−architected for IA-64, AMD64, now finally for IA-32

• PMU is highly specific to a CPU implementation
−large differences even inside a processor family (e.g., X86)

• PMU becoming a key value-add
−improving fairly rapidly

• Many new PMUs go beyond just collecting counts
−Itanium PMU: where cache misses occur, src/tgt of branches

August 6, 2006 6

Why do we need kernel support?

• Some operations require privileged access
−processing/setup of PMU interrupts on counter overflow
−writes/read registers

• Some PMUs allow certain operations at user level:
−IA-64: read PMU data register (PMD), start and stop
−X86 : read counter (RDPMC)

August 6, 2006 7

Diversity of PMU HW
• Itanium 2 9000 (Montecito):
−uses indexed registers: PMC, PMD. PSR for start/stop
−12 counters (47bits), interrupt on overflow, atomic freeze
−PMC for opcode filters, code & data range restrictions
−3 PMD+1 PMC to capture where cache/TLB misses occur
−16 PMD+ 1 PMC for Branch Trace Buffer

• AMD64:
−uses MSR registers (PERFEVTSEL,PERFCTR)
−4 counters (40 bits), interrupt on overflow, no atomic freeze

• Pentium 4:
−uses MSR registers (CCCR, ESCR, PERFCTR)
−18 counters (40 bits), interrupt on overflow, no atomic freeze
−Precise Event Based Sampling (PEBS), HyperThreading

August 6, 2006 8

Diversity of usage models
• Type of measurement
−counting
−sampling (profiling): at some interval (time or other), record in a

sample information about the state of a program/CPU/system.
• Scope of measurement
−system-wide: across all threads running on a CPU
−per-thread: a designated thread (self-monitoring or unmodified)

• Scope of control:
−from user level programs: monitoring tools, compilers, MRE
−from the kernel: SystemTap, scheduler

• Scope of processing:
−off-line: profile-guided optimization (PGO), manual tuning
− in-line: dynamic optimization (DPGO)

August 6, 2006 9

Existing monitoring interfaces
• Oprofile (John Levon):
−included in mainline kernel and most distributions
−system-wide profiling only, support all major platforms

• Perfctr (Mikael Pettersson)
−separate kernel patch
−provides per-thread, system-wide monitoring
−designed for self-monitoring, basic sampling support
−support all IA-32, PowerPC
−used by PAPI toolkit

• VTUNE driver (Intel)
−open-source driver specific to VTUNE

no standard and generic interface exists

August 6, 2006 10

Goals of the perfmon2 interface
• Provides a generic interface to access the PMU
−not dedicated to one application, avoid fragmentation

• Be portable across all PMU models/architectures
−almost all PMU-specific knowledge in user level libraries

• Supports per-thread monitoring
−self-monitoring, unmodified binaries, attach/detach
−multi-threaded and multi-process workloads

• Supports system-wide monitoring
• Supports counting and sampling
• No special recompilation
• Builtin, efficient, robust, secure, simple, documented

August 6, 2006 11

Perfmon2 interface (1)
• Core interface allows read/write of PMU registers
• Uses the system call approach (rather than driver)
• Perfmon2 context encapsulates all PMU state
−each context uniquely identified by file descriptor
−file sharing semantic applies for context access

• Leverages existing mechanisms wherever possible
−e.g., file descriptors, signals, mmap, ptrace

int pfm_create_context(pfarg_ctx_t *ctx, void *a, size_t sz) int pfm_stop(int fd);
int pfm_write_pmcs(int fd, pfarg_pmc_t *pmcs, int n); int pfm_restart(int fd);
int pfm_write_pmds(int fd, pfarg_pmd_t *pmcs, int n); int pfm_create_evtsets(int fd, pfarg_setdesc_t *st, int n);
int pfm_read_pmds(int fd, pfarg_pmd_t *pmcs, int n); int pfm_delete_evtsets(int fd, pfarg_setdesc_t *st, int n);
int pfm_load_context(int fd, pfarg_load_t *ld); int pfm_getinfo_evtsets(int fd, pfarg_setinfo_t *it, int n);
int pfm_start(int fd, pfarg_start_t *st); int pfm_unload_context(int fd);

int close(int fd);

August 6, 2006 12

Perfmon2 interface (2)
• Uniformity makes it easier to write portable tools
• Counters are always exported as 64-bit wide
−emulate via counter overflow interrupt capability if needed

• Exports logical view of PMU registers
−PMC: configuration registers
−PMD: data registers (counters, buffers, ...)

• Mapping to actual registers depends on PMU
−defined by PMU description kernel module
−visible in /sys/kernel/perfmon/pmu_desc/mappings

• Possibility to have virtual PMU registers
−can map to SW or non-PMU processor/system resource
−e.g, PMC256 = ibr0 (IA-64), PMD260 = current->pid

August 6, 2006 13

Perfmon2 interface (3)
• Same ABI between ILP32 and LP64 modes
−all exported structures use fixed-size data types
−EM64T, AMD64: 32-bit tools run unmodified on 64-bit kernel
−kernel: no 32<->64 syscall argument conversions

• Vector arguments for read/write of PMU registers
−portable: decoupled PMC/PMD = no dependency knowledge
−extensible: no knowledge of # registers of PMU
−efficient and flexible: can write one or multiple regs per call

PMC PMD
AMD64

PMC PMD

PMC

Pentium 4
PMC PMD

PMD

Itanium 2

August 6, 2006 14

Basic self-monitoring per-thread session
pfarg_ctx_t ctx; int fd;
pfarg_load_t load;
pfarg_pmd_t pd[1]; pfarg_pmc_t pc[1];
pfmlib_input_param_t inp;
pfmlib_output_param_t outp;...
pfm_find_event(“CPU_CYCLES”, &inp.pfp_events[0]);
inp.pfp_plm = PFM_PLM3; inp.pfp_count = 1;
pfm_dispatch_events(&inp, NULL, &outp);
pd[0].reg_num = pc[0].reg_num = outp.pfp_pc[0].reg_num;
pfm_create_context(&ctx); fd = ctx.ctx_fd;
pfm_write_pmcs(fd, pc, 1);
pfm_write_pmds(fd, pd, 1);
load.load_pid = getpid();
pfm_load_context(fd, &load);
pfm_start(fd, NULL);
/* run code to measure */
pfm_stop(fd);
pfm_read_pmds(fd, pd, 1);
printf(“total cycles %”PRIu64”\n”, pd[0].reg_value);
close(fd);

August 6, 2006 15

Per-thread session
• Thread = kernel visible thread (task)
• PMU state is saved/restored on context switch
−multiple per-thread sessions can run concurrently

• Context attachment:
−one context per thread
−thread must be stopped: leverage ptrace()
−can attach at fork or when thread is already running

• Context inheritance is never done by kernel
−leverage 2.6 ptrace()options (PTRACE_O_TRACE*)
−for many measurements, tools must be aware of new thread
−can selectively follow across: fork,exec,pthread_create
−aggregation done by the tool, if needed

August 6, 2006 16

System-wide session
• Monitors across all threads running on one CPU
• Uses exact same programming sequence as per-thread
−type selected when context is created
−monitored CPU is current CPU during pfm_load_context()

• System-wide (SMP) built as union of CPU-wide sessions
−flexibility: measure different metric on different CPUs
−scalability: strong affinity (processor, cache)
−simplicity: easier error handling, no IPI
−ready for HW buffer: Pentium 4 PEBS

• Mutual exclusion with per-thread session
−due to some HW limitations
−current SW implementation limitations

0

Tool

1 2 3

August 6, 2006 17

Support for sampling
• Support for Event-Based Sampling (EBS) in kernel
−period p expressed as 264-p occurrences of an event

• Can request notification when 64-bit counter overflows
−notification = message and is extracted via read()
−support for select/poll/asynchronous notification (SIGIO)

• Number of sampling periods = number of counters
−allows overlapping sampling measurements

• Optional support for kernel level sampling buffer
−amortize cost of notification by notifying only when buffer full
−buffer remapped read-only to user with mmap(): zero copy
−periods can be randomized to avoid biased samples
−can indicate per PMD: list of PMDs to record/reset on overflow

August 6, 2006 18

Custom sampling buffer formats
• No single format can satisfy all needs
−must keep complexity low and extensibility high

• Export kernel interface for plug-in formats
−easier to port existing tools/infrastructure: OProfile
−easier to exploit HW features: Pentium 4 PEBS buffer

• Each format provides:
−128-bit UUID for identification (passed on context creation)
−A handler function called on counter overflow

• Each format controls:
−Where and how samples are stored
−What gets recorded, how the samples are exported
−When a user notification must be sent to user

August 6, 2006 19

Existing sampling formats
• Default format (builtin):
−linear buffer, fixed header followed by optional PMDs values

• Oprofile format (IA-64 for now):
−10 lines of C, reuse all generic code, small user level changes

• N-way sampling format (released separately):
−implements split buffer (up to 8-way)
−parsing in one part while storing in another: fewer blind spots

• Kernel call stack format (experimental, IA-64):
−records kernel call stacks (unwinder) on counter overflow

• Pentium 4 Precise Event Based Sampling (PEBS)
−100 lines of C, first interface to provide access to feature!

August 6, 2006 20

Event sets and multiplexing (1)
• What is the problem?
−number of counters is often limited (4 on Itanium®2 PMU)
−some events cannot be measured together
−some measurements require a lot of events:

• e,g., cycle breakdown on Itanium®2 CPU requires at least 15 events

• Solution:
−create sets of up to m events when PMU has m counters
−multiplex sets on actual PMU HW
−global counts approximated by simple scaling calculation
−higher switch rate = smaller blind spots = higher overhead

• Kernel support needed to minimize overhead
−switching always occur in context of the monitored thread

August 6, 2006 21

Event sets and multiplexing (2)
• Each set encapsulates the full PMU state
−identified by user-specified unique number (0-65535)
−sets are placed in ordered list based on their unique number

• Timeout-based switching
−granularity depends on kernel timer tick (HZ)
−actual vs. requested timeout is reported to user

• Overflow-based switching
−after threshold of n overflows of a counter
−threshold specified per counter and per set
−can be used to build cascading counters

• Switch mode determined per set, can mix & match
• Works with counting and sampling

August 6, 2006 22

PMU description module
• Controls logical actual PMU register mappings
• PMC and PMD mapping description tables
−PMC: type, logical name, default value, reserved bit fields
−PMC may have write-checker callbacks

• Arch-specific table contains actual location
−e.g., Pentium M: PMC0 PERFEVTSEL0MSR@0x186

• Implemented by kernel module
−auto-loading on context creation, auto-probing on insertion
−easier for: support of new HW, maintenance

$ cat /sys/kernel/perfmon/pmu_desc/mappings
PMC0:0x100000:0xffcfffff:PERFEVTSEL0
PMC1:0x100000:0xffcfffff:PERFEVTSEL1
PMD0:0x0:0xffffffffffffffff:PERFCTR0
PMD1:0x0:0xffffffffffffffff:PERFCTR1

August 6, 2006 23

Perfmon2 architecture summary

PMU Hardware

PMU
description

user level

kernel level

default

n-way

PEBS

kernel-call-stack

Oprofile

perfmon
core

sysfs syscalls

intr

sets

smpl
fmt

pmu res

ctxsw

file

kapi

perfmon arch-specific

August 6, 2006 24

Security
• Cannot assume tools are well-behaved
• Vector arguments, sampling buffers have max. size
−tuneable via /sys

• Per-thread and system-wide contexts
−can only attach to thread owned by caller
−each context type can be limited to a users group (via /sys)

• Reading of PMU registers
−direct access (some arch):limited to self-monitoring
−interface access: can only read registers declared used

• PMU interrupt flooding
−enough blind spots to ensure kernel makes forward progress
−need to add interrupt throttling mechanism

August 6, 2006 25

Kernel-level perfmon2 interface (KAPI)
• Address need to use perfmon2 interface from kernel
−e,g., SystemTap, scheduler

• Cannot use system call interface
−no task, no file descriptor, no signal, no read(), no mmap()

• File descriptor replaced with opaque descriptor (pointer)
• Wait for notification using a completion structure
• Limited to system-wide, other functionalities supported

int pfmk_create_context(pfarg_ctx_t *ct, void *a, size_t s, struct completion *c, void **b, void **d)
int pfmk_write_pmcs(void *d, pfarg_pmc_t *pmcs, int n); int pfmk_restart(void *d);
int pfmk_write_pmds(void *d, pfarg_pmd_t *pmcs, int n); int pfmk_create_evtsets(void *d, pfarg_setdesc_t *st, int n);
int pfmk_read_pmds(void *d, pfarg_pmd_t *pmcs, int n); int pfmk_delete_evtsets(void *d, pfarg_setdesc_t *st, int n);
int pfmk_load_context(void *d, pfarg_load_t *ld); int pfmk_getinfo_evtsets(void *d, pfarg_setinfo_t *it, int n);
int pfmk_start(void d*, pfarg_start_t *st); int pfmk_unload_context(void *d);
int pfmk_stop(void *d); pfmk_close(void *d)

August 6, 2006 26

Status
• Perfmon2 v2.0 (IA-64 ONLY)
−Included in SLES9 and RHEL4
−no event sets, no PMU descriptions, perfmonctl() syscall

• Perfmon2 v2.2
−compatibility layer with v2.0 on Itanium processors
−available as a kernel patch for now, merging with mainline

• Supported processors for v2.2
−all Itanium processors, incl. Montecito
−Intel P6 (PII, PIII, Pentium M), architected IA-32 (Core Duo/Solo)
−Intel Pentium 4 (32-bit, EM64T), incl. HyperThreading, PEBS
−AMD64: all models, 32-bit and 64-bit modes
−MIPS: 5K, 20K (Phil Mucci)
−PowerPC: Power5 very experimental (IBM)

August 6, 2006 27

Tools using the interface (1)
• Caliper(HP) 4.0 (free for non commercial use)
−Per-thread, source level profiles, preset metrics, IA-64 ONLY
−Java-based standalone GUI (local,remote) or Eclipse plug-in

August 6, 2006 28

Tools using the interface (2)
• BEA JRockit 1.4.2 for Linux/ia64:
−Dynamic Profile Guided Optimization (DPGO)

• PAPI toolkit (U. of Tennessee)
−popular toolkit to write portable monitoring tools

• pfmon/libpfm 3.2 (HP Labs) (GPL/MIT)
−pfmon: count, collect profiles per-thread or system-wide
−libpfm helper library: what to measure values of PMC
−all IA-64 features: opcode match, DEAR,BTB, range restrictions
−supports for AMD64, P6
−adding Pentium 4 (IBM), MIPS (Phil Mucci)

• q-tools-0.3 for Linux/ia64 (HP Labs) (GPL)
−qtools: statistical system-wide gprof replacement (user, kernel)

August 6, 2006 29

Current and future activities
• Mainline integration
−submitted for review on lkml
−lots of cleanups, simplifications, bug fixes, perf. improvements

• Oprofile
−ensure continuity of service on non-IA64 HW

• Improving Pentium 4 user level support
• keep up-to-date with new HW, e.g., Core 2 CPUs
• Xen support for PMU virtualization
• PMU arbitration layer
−allows for better sharing of PMU resources between tools
−removes mutual exclusion between system-wide and per-thread

August 6, 2006 30

Conclusions
• Monitoring is key to achieve world-class performance
−only way to understand how SW and HW interact

• Perfmon2 is the most advanced monitoring interface
−custom sampling formats, event set multiplexing, PMU desc.

• Perfmon2 is portable and very extensible
• Built a strong community of users, contributors
−Intel, AMD, IBM, HP, SGI, Redhat, various universities and

individuals
• Once in mainline, expect that better tools will emerge

visit our website at: http://perfmon2.sourceforge.net

