

Perfmon2:
a standard performance monitoring interface
for Linux

Stéphane Eranian
<eranian@gmail.com>

2 January 24, 2008

Agenda

• PMU-based performance monitoring
• Overview of the interface
• Current status
• Tools
• Challenges

3 January 24, 2008

What is performance monitoring?

the action of collecting information related to how an application
or system performs

• Information obtained from CPU/chipset:
−extract micro-architectural level information

−exploit hardware performance counters

−e.g.: count TLB misses, stall cycles, memory access latency

• Information obtained by instrumenting the code:
−extract program-level or system-level information

−statically: compilers (-pg option), explicit code (DTRACE)

−dynamically (code rewrite): HP Caliper, Intel PIN tool

−e.g.: count basic-block executions, number of ctxsw/s

4 January 24, 2008

Performance Monitoring Unit (PMU)

• CPU HW collecting micro-architectural events:
−sources: pipeline, system bus, caches, thermal condition, ...

• All modern ISA have a PMU:
−architected for IA-64, AMD64
−now finally for Intel IA-32 (starting with Yonah)
− important for SW to maximize code reuse

• PMU is highly specific to a CPU implementation
−events

−extended features

5 January 24, 2008

Diversity of PMU HW

• Dual-core Itanium 2: PMC, PMD, 12 counters (47bits)
−atomic freeze, opcode filters, range restrictions
−where cache/TLB misses are (DEAR), Branch Trace Buffer

• AMD64: MSR, 4 counters (40 bits)
−no atomic freeze
− Instruction-Based Sampling (Barcelona)

• Intel Core-based: MSR, 5 counters (31 bits)
−possible atomic freeze
− fixed counters, Precise Event-Based Sampling (PEBS)

• IBM Power 6: SPRN, 4 counters (32 bits)
−preset event groups

− fixed counters (cycles,instr) with no interrupt on overflow

6 January 24, 2008

Diversity of usage models

• Types of measurement:
−counting or sampling

• Scopes of measurement:
−system-wide: across all threads running on a CPU

−per-thread: a designated thread (modified or unmodified)
−virtualized environments (Xen, KVM)

• Scopes of control:
−user level programs: monitoring tools, compilers, MRE
−kernel: SystemTap or VMM

• Scopes of processing:
−offline: profile-guided optimization (PGO), manual tuning

−online: dynamic optimization (DPGO)

7 January 24, 2008

Why a kernel interface?

• PMU interface is composed of registers

• Registers writeable only at most privileged level
−may be readable at the user level (X86, IA64, Power)

• PMU can generate interrupts
−need a kernel level interrupt handler

• Per-thread monitoring requires kernel hooks
−context switch, thread creation/termination

8 January 24, 2008

Existing Linux monitoring interfaces

• OProfile (John Levon):
− included in mainline kernel, most distributions
−system-wide profiling only, supports all major platforms

• Perfctr (Mikael Pettersson)
−separate kernel patch

−provides per-thread, system-wide monitoring

−designed for self-monitoring (e.g., PAPI), basic profiling
−supports all IA-32, PowerPC

• VTUNE driver (Intel)
−open-source driver but specific to VTUNE

fragmentation, no coordination,
no standard and generic interface exists

9 January 24, 2008

Why a standard interface?

• Currrent HW trends make perf. monitoring crucial
−SW must change for multi-core, multi-thread, NUMA, power

• Need monitoring tools to understand SW performance
− requires portable, flexible kernel-level infrastructure

−support needed across all processor architectures

• Standard attractive for ISV/tool developers
−can write portable tools, improve code reuse

−broader market for monitoring products (multi-arch)

• Easier to get accepted in mainline kernel
−no kernel patching, improved support

− integration into commercial Linux distributions

10 January 24, 2008

Overall monitoring architecture

...Caliper

Linux kernel

CPU HARDWAREPMU

pfmonBEA
Jrockit

arch
perfmon

generic
perfmon

11 January 24, 2008

Why use Linux?

• Need to build a community to push a new standard

• Open-source provides key advantages:
−easily available

−easy to share code

−easy to involve other developers
−collaborative effort to speed up development/adoption

• Neutral operating system

• Support for multiple architectures

• Runs on very small to very large systems

• Linux is lacking a good monitoring interface

12 January 24, 2008

Goals of the perfmon2 interface

• A generic programming interface to access the PMU
−bottom-up approach, no tool in mind

• Be portable across all PMU models/architectures

• Supports system-wide and per-thread monitoring
−self-monitoring, unmodified binaries, attach/detach

−multi-threaded and multi-process workloads

• Supports counting and sampling

• No recompilation

• Builtin, efficient, robust, secure, documented

13 January 24, 2008

Perfmon2 interface (1)

• Core interface allows read/write of PMU registers

• Uses the system call approach (rather than driver)

• Perfmon2 context encapsulates all PMU state
−context uniquely identified by file descriptor

• Leverages existing mechanisms wherever possible
− file descriptors, signals, mmap(), ptrace()

int pfm_create_context(pfarg_ctx_t *ctx, char *s, void *a, size_t sz) int pfm_stop(int fd);
int pfm_write_pmcs(int fd, pfarg_pmc_t *pmcs, int n); int pfm_restart(int fd);
int pfm_write_pmds(int fd, pfarg_pmd_t *pmcs, int n); int pfm_create_evtsets(int fd, pfarg_setdesc_t *st, int n);
int pfm_read_pmds(int fd, pfarg_pmd_t *pmcs, int n); int pfm_delete_evtsets(int fd, pfarg_setdesc_t *st, int n);
int pfm_load_context(int fd, pfarg_load_t *ld); int pfm_getinfo_evtsets(int fd, pfarg_setinfo_t *it, int n);
int pfm_start(int fd, pfarg_start_t *st); int pfm_unload_context(int fd);

int close(int fd);

14 January 24, 2008

Perfmon2 interface (2)

Uniformity makes it easier to write portable tools

• Registers are always exported as 64-bit wide
−64-bit counters emulated via overflow interrupt capability

• Exports logical view of PMU registers
−PMC: configuration registers

−PMD: data registers (counters, buffers)
−use indexed-register style naming: PMC[1], PMC[2],...

• Mapping to actual registers depends on PMU model
−defined by PMU description kernel module

−visible in /sys/kernel/perfmon/pmu_desc

15 January 24, 2008

Perfmon2 interface (3)

• Same ABI between ILP32 and LP64 models
−x86_64, ppc64: 32-bit tools run unmodified on 64-bit kernel
−all syscall arguments have fixed size

• Vector arguments for read/write of PMU registers:
−portable: decoupled PMC/PMD = no dependency knowledge

−extensible: no knowledge of number of registers

−efficient and flexible: can write one or multiple regs per call

PMC PMD
AMD64

PMC PMD

PMC

Pentium 4
PMC PMD

PMD

Intel Core, Itanium 2

16 January 24, 2008

Per-thread session

thread = kernel visible thread (task)

• PMU state is saved/restored on context switches
−multiple per-thread sessions can run concurrently

• Supports one session per thread

• Thread must be stopped to access PMU state
− leverages ptrace()

−except for self-monitoring

• No inheritance across fork/pthread_create
−can use ptrace()options (PTRACE_O_TRACE*)

−aggregation done by the tool, if needed

• Available to regular users

17 January 24, 2008

Why a per-thread mode?

• Needed for simple counting

• Need to follow thread if it migrates to another CPU
−monitoring cannot change thread's affinity settings
− if using system-wide => must monitor all CPUs

• Security
−only see data related to you threads/processes
−no need to be super-user

• Allow support of certain PMU HW features:
− Intel Core: PEBS hardware buffer does not record pid/tid

− Intel Itanium2: Branch Trace Buffer does not record pid/tid

− Intel dual-core Itanium2 IP-EAR does not record no pid/tid

18 January 24, 2008

Per-thread implementation

• No cost in space if unused:
−PMU state encapsulated in independent structure
−adds one pointer to thread structure

• No cost in time if unused:
− register access latency high,wrmsr/rdmsr slow (>100 cycles)

• lazy context switch:
−only when PMU used by the thread

−only save/restore registers actually used

−SMP uses lazy state restore, similar to fp state

19 January 24, 2008

Typical monitoring session

fd

user
kernel

pfm_context

fd table

monitoring tool /usr/bin/date

...
pfm_ctx

...
task_struct

...
pfm_ctx

...
task_struct

fd table

20 January 24, 2008

Basic self-monitoring per-thread session
01 pfarg_ctx_t ctx; int fd;
02 pfarg_load_t load;
03 pfarg_pmd_t pd[1]; pfarg_pmc_t pc[1];
04 pfmlib_input_param_t inp;
05 pfmlib_output_param_t outp;
06 pfm_find_event(“CPU_CYCLES”, &inp.pfp_events[0]);
07 inp.pfp_plm = PFM_PLM3; inp.pfp_count = 1;
08 pfm_dispatch_events(&inp, NULL, &outp);
09 pd[0].reg_num = out.pfp_pd[0].reg_num;
10 pc[0].reg_num = outp.pfp_pc[0].reg_num;
11 fd = pfm_create_context(&ctx, NULL, 0, 0);
12 pfm_write_pmcs(fd, pc, 1);
13 pfm_write_pmds(fd, pd, 1);
14 load.load_pid = getpid();
15 pfm_load_context(fd, &load);
16 pfm_start(fd, NULL);
17 /* run code to measure */
18 pfm_stop(fd);
19 pfm_read_pmds(fd, pd, 1);
20 printf(“total cycles %”PRIu64”\n”, pd[0].reg_value);
21 close(fd);

21 January 24, 2008

System-wide session

• Monitors across all threads running on one CPU
−same programming sequence as per-thread

• System-wide SMP = union of CPU-wide sessions:
− flexibility: measure different metrics on different CPUs

−scalability: strong affinity (processor, cache)
− ready for HW buffer, e.g., Intel PEBS

• Mutual exclusion with per-thread session

0

Tool

1 2 3

22 January 24, 2008

Support for sampling

• Supports Event-Based Sampling (EBS)
−period p expressed as 264-p occurrences of an event

− #sampling periods = number of counters

• Can request notification when 64-bit counter overflows
−notification = message, extracted via read()

−support for select(),poll(),SIGIO

• Optional support for kernel level sampling buffer
−amortize cost by notifying only when buffer full

−buffer remapped read-only to user with mmap()= zero copy

−periods can be randomized to avoid biased sample

23 January 24, 2008

Kernel level sampling buffer

addr = mmap(..,fd)user
kernel

smpl_buffer

pfm_context

fd table

monitoring tool

24 January 24, 2008

Sampling buffer formats

• No single format can satisfy all needs
−must keep complexity low and extensibility high

• Extract buffer format from core to a kernel module

• Each format provides at least:
−string for identification (passed on context creation)

−counter overflow handler

• Each format controls:
−where and how samples are stored

−what gets recorded, how the samples are exported

−when a user notification must be sent to user

25 January 24, 2008

Existing sampling formats

• Default format (builtin):
− linear buffer, fixed header followed by optional PMDs values

• OProfile format (IA-64, X86)
−10 lines of C, reuse all generic code, small user level changes

• Two-way sampling format:
−process one part while storing in the other: limit blind spots

• Kernel call stack format (experimental, IA-64):
− records kernel call stacks (unwinder) on counter overflow

• Precise Event Based Sampling (P4, Intel Core 2 Duo)
−100 lines of C, first interface to provide access to feature!

26 January 24, 2008

Event sets and multiplexing

• What is the problem?
−number of counters is often limited (4 on Itanium®2 PMU)
−some events cannot be measured together

• What is the solution?
−create register sets which encapsulate the full PMU state

−multiplex sets on actual PMU HW

−sets identified by simple integer

−sets managed in round-robin fashion

• global counts approximated by simple scaling
• Kernel support needed to minimize overhead

• Supports timeout or overflow-based switching

• Works with counting and sampling

27 January 24, 2008

Security

Cannot assume tools/users are well-behaved

• Vector arguments, sampling buffers have max. size
− tuneable via /sys

• Per-thread and system-wide contexts
−can only attach to thread owned by caller

−each type can be limited to a users group (via /sys)

• Reading of PMU registers
−direct access (some arch):limited to self-monitoring
− interface access: can only read registers declared used

• PMU interrupt flooding
−need to add interrupt throttling mechanism

28 January 24, 2008

PMU description module

• Why?
−Hardware release cycles Linux distros release cycles

−needs new hardware support quickly
−easier bug fixing

• How?
−move model specific code/data to kernel module

−keep architecture specific code/data in the core kernel

− relies on having a PMU architecture: IA-64, AMD64, IA-32?

−auto-loading on first context creation

• Model-specific data:
−physical to logical PMU register mappings

− register sanity checker, if needed

29 January 24, 2008

Perfmon2 architecture summary

PMU Hardware

PMU
description

user level

kernel level

default

two-way

PEBS

kernel-call-stack

OProfile

perfmon
core

sysfs syscalls

intr

sets

smpl
fmtpmu

res

ctxsw

file

perfmon arch-specific

30 January 24, 2008

Supported Processors

HW Vendors Model Contributors
AMD AMD64 family 6 Cornell U.
AMD AMD64 family 15 HPLabs
AMD AMD64 family 16 AMD
Intel Itanium (all models) HPLabs
Intel Pentium II, Pentium Pro Cornell U.

Intel Pentium III, Pentium M HPLabs
Intel Core Duo/Core Solo HPLabs
Intel Pentium 4 Intel
Intel Core 2 Duo HPLabs
MIPS various Phil Mucci, SiCortex, Broadcom, Cornell U.
IBM Power4, Power5, PPC970 IBM
IBM Power 6 IBM
IBM Cell IBM, Sony, Toshiba
Cray X2, XT Cray
Sun Ultra12,Ultra3* David S. Miller
Sun Niagara1, Niagara2 David S. Miller

still missing: ARM, Hitachi SH, Alpha (;->)

31 January 24, 2008

Status

• 1st generation (v2.0) shipping on Linux/ia64 only
−available since RHEL4/SLES9

• Multi-arch version (v2.8) in development:
−selected to become Linux monitoring interface

− reviewed on LKML multiple times, still needs one last pass

−supported publicly by many HW, Linux vendors

−once in mainline commercial distros (RHEL6, SLES11?)

• In production on Cray X2 and SiCortex systems

• Kernel patch stats:
−1.1MB over 5 processor architectures

−adds ≈7000 lines of C

32 January 24, 2008

Tools(1)

• pfmon/libpfm 3.2 (HP Labs) (GPL/MIT)
−pfmon: count, collect profiles per-thread or system-wide

− libpfm helper library: what to measure � values of PMC

− IA-64 features: opcode match, DEAR,BTB, range restrictions

−supports all IA64, X86 (Intel, AMD)

−contributions for Cell, Power*, SPARC64*, MIPS
−available on commercial distributions

• PAPI toolkit (U. of Tennessee)
−popular toolkit to write portable monitoring tools

• BEA JRockit 1.4.2 for Linux/ia64:
−Dynamic Profile Guided Optimization (DPGO)

33 January 24, 2008

Tools(2)

• Caliper(HP) 4.3 (free for non commercial use)
−Per-thread, source level profiles, preset metrics, IA-64 ONLY

−Java-based standalone GUI (local,remote) or Eclipse plug-in

34 January 24, 2008

Tools(3)

• gpfmon (CERN): python-based GUI for pfmon

35 January 24, 2008

Current challenges

• Merge with mainline

• Sharing the PMU resource
−between different subsystems: watchdog, OProfile, perfmon2

−between conflicting users: per-thread and system-wide

−mutual-exclusion is too restrictive, especially on large systems
−workaround via affinity restriction is invalid

• PMU access in virtualized environments
−PMU usage is never for correctness but for performance

−usage model evolving: from development only to always on

−used by monitoring, tools, managed runtimes, OS kernels

−must ensure continuity of service

−need guest PMU virtualization + system-wide monitoring

36 January 24, 2008

Summary

• Performance monitoring is not optional anymore

• No multicore performance without monitoring!

• Perfmon2 is a very advanced monitoring interface

• Perfmon2 support all major hardware platforms

• Perfmon2 has an active community of users/dev

• Perfmon2 embraced by all HW vendors

• Perfmon2 to become the Linux monitoring interface

37 January 24, 2008

References

• Perfmon2 web site/mailing lists:
−visit http://perfmon2.sf.net

• Caliper web site
−visit http://www.hp.com/go/caliper

• gpfmon (CERN):
−https://andrzejn.web.cern.ch/andrzejn

http://perfmon2.sf.net/
http://www.hp.com/go/caliper
https://andrzejn.web.cern.ch/andrzejn

