Perfmon2:
a standard performance monitoring interface
for Linux

Stéephane Eranian
<eranian@gmail.com>




I Agenda

PMU-based performance monitoring
Overview of the interface

Current status

Tools

Challenges

2 January 24, 2008



I What is performance monitoring?

the action of collecting information related to how an application
or system performs

Information obtained by instrumenting the code:
extract program-level or system-level information
statically: compilers (-pg option), explicit code (DTRACE)
dynamically (code rewrite): HP Caliper, Intel PIN tool
e.g.: count basic-block executions, number of ctxsw/s

Information obtained from CPU/chipset:
extract micro-architectural level information
exploit hardware performance counters
e.g.: count TLB misses, stall cycles, memory access latency

3 Januar y 24, 2008



I Performance Monitoring Unit (PMU)

CPU HW collecting micro-architectural events:

sources: pipeline, system bus, caches, thermal condition, ...

All modern ISA have a PMU:
architected for |A-64, AMDG64
now finally for Intel IA-32 (starting with Yonah)
important for SW to maximize code reuse

PMU is highly specific to a CPU implementation
events
extended features



| Diversity of PMU HW
Dual-core Itanium 2: PMC, PMD, 12 counters (47bits)

atomic freeze, opcode filters, range restrictions
where cache/TLB misses are (DEAR), Branch Trace Buffer

AMDG64: MSR, 4 counters (40 bits)

no atomic freeze
Instruction-Based Sampling (Barcelona)

Intel Core-based: MSR, 5 counters (31 bits)

possible atomic freeze
fixed counters, Precise Event-Based Sampling (PEBS)

IBM Power 6: SPRN, 4 counters (32 bits)

preset event groups
fixed counters (cycles,instr) with no interrupt on overflow



IDiversity of usage models

Types of measurement:
counting or sampling

Scopes of measurement:

system-wide: across all threads running on a CPU
per-thread: a designated thread (modified or unmodified)
virtualized environments (Xen, KVM)

Scopes of control:

user level programs: monitoring tools, compilers, MRE
kernel: SystemTap or VMM

Scopes of processing:

offline: profile-guided optimization (PGO), manual tuning
online: dynamic optimization (DPGO)



I Why a kernel interface?

PMU interface is composed of registers

Registers writeable only at most privileged level
may be readable at the user level (X86, I1A64, Power)

PMU can generate interrupts
need a kernel level interrupt handler

Per-thread monitoring requires kernel hooks
context switch, thread creation/termination



IExisting Linux monitoring interfaces
OProfile (John Levon):

included in mainline kernel, most distributions
system-wide profiling only, supports all major platforms

Perfctr (Mikael Pettersson)
separate kernel patch
provides per-thread, system-wide monitoring
designed for self-monitoring (e.g., PAPI), basic profiling
supports all IA-32, PowerPC

VTUNE driver (Intel)
open-source driver but specific to VTUNE

fragmentation, no coordination,
no standard and generic interface exists

8 Januar y 24, 2008



IWhy a standard interface?

Currrent HW trends make perf. monitoring crucial
SW must change for multi-core, multi-thread, NUMA, power

Need monitoring tools to understand SW performance
requires portable, flexible kernel-level infrastructure
support needed across all processor architectures

Standard attractive for ISV/tool developers

can write portable tools, improve code reuse
broader market for monitoring products (multi-arch)

Easier to get accepted in mainline kernel
no kernel patching, improved support
Integration into commercial Linux distributions



IOveraII monitoring architecture

10 January 24, 2008



IWhy use Linux?

Need to build a community to push a new standard

Open-source provides key advantages:
easily available
easy to share code
easy to involve other developers
collaborative effort to speed up development/adoption

Neutral operating system

Support for multiple architectures

Runs on very small to very large systems
Linux is lacking a good monitoring interface



I Goals of the perfmon2 interface

A generic programming interface to access the PMU
bottom-up approach, no tool in mind

Be portable across all PMU models/architectures

Supports system-wide and per-thread monitoring
self-monitoring, unmodified binaries, attach/detach
multi-threaded and multi-process workloads

Supports counting and sampling
No recompilation

Builtin, efficient, robust, secure, documented



| Perfmon2 interface (1)

Core interface allows read/write of PMU registers
Uses the system call approach (rather than driver)

Perfmon2 context encapsulates all PMU state
context uniquely identified by file descriptor

Leverages existing mechanisms wherever possible
file descriptors, signals, mmap (), ptrace ()

int pfm_create_context(pfarg_ctx_t *ctx, char *s, void *a, size_t sz) fint pfm_stop(int fd);

int pfm_write_pmes(int fd, pfarg_pmc_t *pmcs, int n); int pfm_restart(int fd);

int pfm_write_pmds(int fd, pfarg_pmd_t *pmcs, int n); int pfm_create_evtsets(int fd, pfarg_setdesc_t *st, int n);
int pfm_read_pmds(int fd, pfarg_pmd_t *pmcs, int n); int pfm_delete_evtsets(int fd, ptarg_setdesc_t *st, int n);
int pfm_load_context(int fd, pfarg_load_t *Id); int pfm_getinfo_evtsets(int fd, pfarg_setinfo_t *it, int n);
int pfm_start(int td, ptarg_start_t *st); int pfm_unload_context(int fd);




| Perfmon2 interface (2)

Uniformity makes it easier to write portable tools

Registers are always exported as 64-bit wide
64-bit counters emulated via overflow interrupt capability

Exports logical view of PMU registers
PMC: configuration registers
PMD: data registers (counters, buffers)
use indexed-register style naming: PMC[1], PMC[2],...

Mapping to actual registers depends on PMU model

defined by PMU description kernel module
visible in / sys/ ker nel / per f non/ pnu_desc

14 January 24, 2008



IPerfmon2 interface (3)

Same ABI between ILP32 and LP64 models

x86_64, ppcb4: 32-bit tools run unmodified on 64-bit kernel
all syscall arguments have fixed size

Vector arguments for read/write of PMU registers:
portable: decoupled PMC/PMD = no dependency knowledge
extensible: no knowledge of number of registers
efficient and flexible: can write one or multiple regs per call

AMD64 Pentium 4 Intel Core, ltanium 2

>
PMC PMD




I Per-thread session

thread = kernel visible thread (task)

PMU state is saved/restored on context switches
multiple per-thread sessions can run concurrently

Supports one session per thread

Thread must be stopped to access PMU state
leverages pt race()
except for self-monitoring

No inheritance across fork/pthread create
can use ptrace() options (PTRACE O TRACE*)

aggregation done by the tool, if needed

Available to regular users

16 January 24, 2008



I Why a per-thread mode?

Needed for simple counting

Need to follow thread if it migrates to another CPU

monitoring cannot change thread's affinity settings
if using system-wide => must monitor all CPUs

Security

only see data related to you threads/processes
no need to be super-user

Allow support of certain PMU HW features:
Intel Core: PEBS hardware buffer does not record pid/tid
Intel Itanium2: Branch Trace Buffer does not record pid/tid
Intel dual-core Itanium2 IP-EAR does not record no pid/tid



I Per-thread implementation

No cost in space if unused:
PMU state encapsulated in independent structure
adds one pointer to thread structure

No cost in time if unused:
register access latency high,wrmsr/rdmsr slow (>100 cycles)

lazy context switch:
only when PMU used by the thread
only save/restore registers actually used
SMP uses lazy state restore, similar to fp state



monitoring tool [ usr/ bin/date

user
kernel

-

pfm_context

19 January 24, 2008



I Basic self-monitoring per-thread session

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

20

pfarg ctx t ctx; 1int f£d;

pfarg load t load;

pfarg pmd t pd[l]; pfarg pmc t pc[l];
pfmlib input param t 1inp;

pfmlib output param t outp;

pfm find event ("CPU CYCLES”, &inp.pfp events[0]);
inp.pfp plm = PFM PLM3; inp.pfp count = 1;
pfm dispatch events (&inp, NULL, &outp);
pd[0] .reg num = out.pfp pd[0].reg num;
pc[0].reg num = outp.pfp pc[0].reg num;

fd = pfm create context(&ctx, NULL, 0, 0);
pfm write pmcs (fd, pc, 1);

pfm write pmds (fd, pd, 1);

load.load pid = getpid();

pfm load context (fd, &load);

pfm start (fd, NULL);

/* run code to measure */

pfm stop (fd);

pfm read pmds (fd, pd, 1);

printf (“total cycles %”PRIu64”\n”, pd[0] .reg value);
close (fd) ;

January 24, 2008



I System-wide session

Monitors across all threads running on one CPU
same programming sequence as per-thread

System-wide SMP = union of CPU-wide sessions:
flexibility: measure different metrics on different CPUs

scalability: strong affinity (processor, cache)
ready for HW buffer, e.g., Intel PEBS

Mutual exclusion with per-thread session

21 January 24, 2008



I Support for sampling

Supports Event-Based Sampling (EBS)
period p expressed as 2°*- p occurrences of an event
#sampling periods = number of counters

Can request notification when 64-bit counter overflows
notification = message, extracted via r ead()
support for select () ,poll(),SIA O

Optional support for kernel level sampling buffer
amortize cost by notifying only when buffer full
buffer remapped read-only to user with nmap( ) = zero copy

periods can be randomized to avoid biased sample



monitoring tool

\ smpl_buffer

pfm_context

23 January 24, 2008



I Sampling buffer formats

No single format can satisfy all needs
must keep complexity low and extensibility high

Extract buffer format from core to a kernel module

Each format provides at least:
string for identification (passed on context creation)
counter overflow handler

Each format controls:
where and how samples are stored
what gets recorded, how the samples are exported
when a user notification must be sent to user



I Existing sampling formats

Default format (builtin):
linear buffer, fixed header followed by optional PMDs values

OProfile format (IA-64, )

10 lines of C, reuse all generic code, small user level changes

Two-way sampling format:
process one part while storing in the other: limit blind spots

Kernel call stack format (experimental, |A-64):
records kernel call stacks (unwinder) on counter overflow

Precise Event Based Sampling (P4, Intel Core 2 Duo)
100 lines of C, first interface to provide access to feature!



I Event sets and multiplexing

What is the problem?

number of counters is often limited (4 on ltanium®2 PMU)
some events cannot be measured together

What is the solution?

create register sets which encapsulate the full PMU state
multiplex sets on actual PMU HW

sets identified by simple integer

sets managed in round-robin fashion

global counts approximated by simple scaling
Kernel support needed to minimize overhead

Supports timeout or overflow-based switching
Works with counting and sampling



I Security

Cannot assume tools/users are well-behaved

Vector arguments, sampling buffers have max. size
tuneable via / sys

Per-thread and system-wide contexts

can only attach to thread owned by caller
each type can be limited to a users group (via/ sys)

Reading of PMU registers
direct access (some arch):limited to self-monitoring
interface access: can only read registers declared used

PMU interrupt flooding

need to add interrupt throttling mechanism

27  January 24, 2008



IPMU description module
Why?

Hardware release cycles # Linux distros release cycles

needs new hardware support quickly
easier bug fixing

How?
move model specific code/data to kernel module
keep architecture specific code/data in the core kernel

relies on having a PMU architecture: |1A-64, AMD64, 1A-327
auto-loading on first context creation

Model-specific data:

physical to logical PMU register mappings
register sanity checker, if needed



IPerfmonZ architecture summary

user level
kernel level sysfs syscalls file
default
two-way
smpl .
pmu = -
fmt kernel-call-stack
res sets
PMU OProfile
description :
ctxsw| iIntr PEBS

PMU Hardware

29 January 24, 2008



ISupported Processors

HW Vendors |[Model Contributors
AMD AMD64 family 6 Cornell U.

AMD AMD64 family 15 HPLabs

AMD AMD64 family 16 AMD

Intel ltanium (all models) HPLabs

Intel Pentium I, Pentium Pro Cornell U.

Intel Pentium Ill, Pentium M HPLabs

Intel Core Duo/Core Solo HPLabs

Intel Pentium 4 Intel

Intel Core 2 Duo HPLabs

MIPS various Phil Mucci, SiCortex, Broadcom, Cornell U,
IBM Power4, Power5, PPC970 |IBM

IBM Power 6 IBM

IBM Cell IBM, Sony, Toshiba
Cray X2, XT Cray

Sun Ultra12,Ulkra3* David S. Miller

Sun Niagaral, Niagara? David S. Miller

still missing: ARM, Hitachi SH, Alpha (;->)



I Status

1%t generation (v2.0) shipping on Linux/ia64
available since RHEL4/SLES9

Multi-arch version (v2.8) in development:
selected to become Linux monitoring interface
reviewed on LKML multiple times, still needs one last pass
supported publicly by many HW, Linux vendors

once in mainline = commercial distros (RHEL6, SLES112)
In production on Cray X2 and SiCortex systems

Kernel patch stats:
1.1MB over 5 processor architectures

adds =7000 lines of C



ITooIs(1)
pfmon/libpfm 3.2 (HP Labs) (GPL/MIT)

pfmon: count, collect profiles per-thread or system-wide
libpfm helper library: what to measure [ Tvalues of PMC
|A-64 features: opcode match, DEAR,BTB, range restrictions
supports all IA64, X86 (Intel, AMD)

contributions for Cell, Power*, SPARC64*, MIPS

available on commercial distributions

PAPI toolkit (U. of Tennessee)

popular toolkit to write portable monitoring tools

BEA JRockit 1.4.2 for Linux/ia64:
Dynamic Profile Guided Optimization (DPGO)



ITooIs(Z)

Caliper(HP) 4.3 (free for non commercial use)

Per-thread, source level profiles, preset metrics, I1A-64 ONLY
Java-based standalone GUI (local,remote) or Eclipse plug-in

= HP Caliper — =X
File Edit Connect Project Collect wWindow Help |

i & oF | O &8 8 | B

P Projects 32 = O || collect | CPU Cycles Run (caldera.hpl.hp.com. 7/12/06 5:18 PM] | (s cPU Cycles Run (caldera. hpl.hp.com. 7/12/06 5:30 PM) 23 = O

g2y (i = ||Precess:is.B(6721) Thread:all Load Module:is.B Function: randlc = = o e Ev I? W ow o | B o=
¥ = Default_Project EIRUn Summary | |z|CPU Events [ClHistogram
b Saved Collectior P =] Owverview: Percent
P (= CPU Cycles Run Samples of Grand Totals
B (= CcPU Cycles Run - 0 2.26% 4,51
d= cPU Cycles Run Function Disassembly =] f—
= CPU Cycles Run 0x0Z=0:0 M nop.m 0 1.83
dis cpL Cycles Run =1 F ‘Ecvt.. fx. trunc £7=£9
2 I nop. i a ;:

= CPU Events Run

[
[
[
B (= CPU Cycles Run
[
[
b
-

1l M nop.m u]
®CPU Cycles Run : 2 I sxtd rZ=r3 ;; —
= CcPU Cycles Run 0x0300:0 ™ setf.sig £15=rZ 0.45
= CPU Cycles Run :1 I nop. i [u}
@) Collection Spe I nop. i o ;: —
E Run Summan 0x0310:0 ™ nop.m o | 2.91 —
1 F fovt.xf £14=f15 =l

[El CPU Events (¢ 2 .
Processes | Load Modules | Functions Source/Disassembly |

=
Diagnostics ® A T O
Application Consocle
-
~
<1 i) K1 |

33 January 24, 2008



ITooIs(3)

pfmon (CERN):

ython-base

d GUI for pfmon

Eile Edit Help
[ = | m A = | a
Quit Local Remote Connect Disconnec Attach Execute
. Options | Output ‘ Results [ /* Analysis | [ Graphs |, Scenarios
Monitor | Event name | — | Event parameters:
UNHALTED CORE CYCLES Mame: LAST_LEVEL_CACHE_MISSES
INSTRUCTIONS_RETIRED Code: 0Ox412e
[0 UNHALTED_REFEREMCE_CYCLES Counters: Set([0, 11) Eile Edit Help
] LAST_LEVEL_CACHE_REFEREMNCES Description: ¢ Details...
4 [ @ B w o
Quit Local Remote Connect Disconnect Attach Execute
] BRAMNCH_INSTRUCTIONS_RETIRED
O - fle Edit Help . Ewvents | . Optiens | Output | Results [ /2* Analysis §Scenarlos|
U RS_UOP: @ ol % = ( @] () Bar graph @ Line graph [ Alternative label layout Export...
| RS_UOP: Quit Local Rermote Co Attach
1 LOAD_BL, g 5 : Process: jwork/dml/dmimem/dmimerm 10 MIN_STRIDE=54 MAX_STRI
- O Ewents . Options Output | Results | /* Analysis | |i-'_J Gra
Ll (SBDRA . " ' Vieualioati oM BUS_TRANS_MEM; SELF
Xecution: Isualisation:
[] STOREE LAST_LEVEL_CACHE_MISSES
O SEGMEN Path: }-n,rdmlmem 10 MIN_STRIDE=64 MAX_STRIDE=64 Tirme format (UM 33.0M7
O SSE PRE Execution mode: . | A ~=_
O single run Sampling 30.0 M
L1 pTB_Me ) Event to use for
- ® sampling
MEMORY 25.0 M =
O Profile UMNHALTED_COI
itter: . Long samplin 4
Filter: All session: g pling p 20.0M
’: [ System-wide Sample buffer
15.0M =
[ Follow all Profile:
[1 Follow fork() npling f 10.0M —
[ Follow wiork() srlinm
[1 Follow pthreads 30M4
[ Follow exec
0.0 f— y T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Privil level: User level (3, default
ez el | Mimer vl (2, i) = Relative time (seconds); reference event: UNHALTED_CORE_CYCLES gpfiman ganerated graph

Output:
[] Disable command output
[ werbose output
[] bebug output




I Current challenges

Merge with mainline

Sharing the PMU resource
between different subsystems: watchdog, OProfile, perfmon2
between conflicting users: per-thread and system-wide
mutual-exclusion is too restrictive, especially on large systems
workaround via affinity restriction is invalid

PMU access in virtualized environments
PMU usage is never for correctness but for performance
usage model evolving: from development only to always on
used by monitoring, tools, managed runtimes, OS kernels
must ensure continuity of service
need guest PMU virtualization + system-wide monitoring



I Summary

Performance monitoring is not optional anymore

No multicore performance without monitoring!

Perfmon2 is a very advanced monitoring interface
Perfmon2 support all major hardware platforms
Perfmon2 has an active community of users/dev
Perfmon2 embraced by all HW vendors

Perfmon2 to become the Linux monitoring interface



I References

Perfmon2 web site/mailing lists:
visit http://perfmon2.sf.net

Caliper web site
visit http://www.hp.com/go/caliper

gpfmon (CERN):

https://andrzejn.web.cern.ch/andrzejn

37 Januar y 24, 2008


http://perfmon2.sf.net/
http://www.hp.com/go/caliper
https://andrzejn.web.cern.ch/andrzejn

