nnnnnn

oerf_monQ: a flexible
oerrormance moniforing
inferface for Linux

berfmon?: une inferface
flexible pour I'analyse de
herformance sous Linux

Stéphane Eranian
HP Labs

July 2006

Ottawa Linux Symposium 2006
Ottawa, Canada

© 2006 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

I Agenda

What is performance monitoring?
What is the PMU?
What is the problem?

Overview of the pertmon2 intertace
Status

Existing tools

Current & future work

August 6, 2006

nnnnnn

I What is pertormance monitoring? e

The action of collecting information related to how an
application or system performs

Information obtained by instrumenting the code
extract program-level or system-level information
statically: compilers (-pg option), explicit code (LTTng, Xenmon)
dynamically (code rewrite): HP Caliper, Intel PIN tool, Kprobes
example: count basic-block execution, number of ctxsw/s

Information obtained from CPU/chipset
extract micro-architectural level information
exploit hardware performance counters
example: count TLB misses, stall cycles, memory access latency

August 6, 2006 3

-
I Why is monitoring important? 2

Transparent HW improvements are slowing down

multithread, multi-cores, NUMA instead of clock speed
HW changes impact SW more than in the past

SW compute needs are continuing to grow fast

major SW evolutions necessary to better exploit HW
example: SW must be multithreaded for multi-core CPU

Monitoring is key to detecting/solving problems
where are the stalls, what's the memory bandwidth utilization?
develop smart tools: must tell why and what to do about it2
better monitoring HW: stall, cache analysis, bus utilization

August 6, 2006

I What is the PMU?2 Q]

Piece of CPU HW collecting micro-architectural events:
from pipeline, system bus, caches, ...

All modern CPU have a PMU
architected tor IA-64, AMD64, now finally for |A-32

PMU is highly specific to a CPU implementation

large differences even inside a processor family (e.g., X86)

PMU becoming a key value-add
improving fairly rapidly

Many new PMUs go beyond just collecting counts
ltanium PMU: where cache misses occur, src/tgt of branches

August 6, 2006 5

I Why do we need kernel support? pe

Some operations require privileged access
processing/setup of PMU interrupts on counter overflow
writes/read registers

Some PMUs allow certain operations at user level:
|A-64: read PMU data register (PMD), start and stop
X86 : read counter (RDPMC)

August 6, 2006 6

Diversity ot PMU HW 2

ltanium 2 9000 (Montecito):
uses indexed registers: PMC, PMD. PSR for start/stop

12 counters (47bits), interrupt on overtlow, atomic freeze
PMC for opcode filters, code & data range restrictions

3 PMD+1 PMC to capture where cache/TLB misses occur
16 PMD+ 1 PMC for Branch Trace Butfer

AMD64:

uses MSR registers (PERFEVTSEL,PERFCIR)

4 counters (40 bits), interrupt on overflow, no atomic freeze
Pentium 4:

uses MSR registers (CCCR, ESCR, PERFCTR)

18 counters (40 bits), interrupt on overtlow, no atomic freeze

Precise Event Based Sampling (PEBS), HyperThreading

August 6, 2006 7

I Diversity ot usage models e

Type of measurement
counting
sampling (protiling): at some interval (time or other), record in a
sample information about the state of a program/CPU/system.
Scope of measurement

system-wide: across all threads running on a CPU
perthread: a designated thread (self-monitoring or unmoditied)

Scope of control:

from user level programs: monitoring tools, compilers, MRE
from the kernel: SystemTap, scheduler

Scope of processing:

off-line: profile-guided optimization (PGO), manual tuning
in-line: dynamic optimization (DPGQO)

August 6, 2006 8

Existing monitoring intertaces o
Oprofile (John Levon):

included in mainline kernel and most distributions
system-wide profiling only, support all major plattorms

Pertctr (Mikael Pettersson)

separate kernel patch
provides perthread, system-wide monitoring
designed for self-monitoring, basic sampling support

support all IA-32, PowerPC
used by PAPI toolkit

VTUNE driver (Intel)

open-source driver specific to VTUNE

August 6, 2006 ?

Goals of the pertmon?2 intertace oy

Provides a interface to access the PMU
not dedicated to one application, avoid fragmentation

Be portable across all PMU models/architectures
almost all PMU-specitic knowledge in user level libraries

Supports monitoring
self-monitoring, unmodified binaries, attach/detach
multithreaded and multi-process workloads

Supports system-wide monitoring

Supports counting and sampling
No special recompilation
, efficient, robust, secure, simple, documented

August 6, 2006 10

Perfmon?2 interface

-
(1) 2

Core intertace allows read/write of PMU registers

Uses the ap

Perfmon?2 enca

oroach (rather than driver)

osulates all PMU state

each context uniquely id

entified by file descriptor

ftile sharing semantic applies for context access

Leverages existing mechanisms wherever possible
e.g., file descriptors, signals, mmap, ptrace

intp
m_write_pmcs(int fd, pfarg_pme_t *pms, int n);
m_write_pmds(int fd, pfarg_pmd_t *pmcs, int n);

intp
intp
int pfm_read_pmds{int fd, pfarg_pmd_t *pmcs, int n);
m_load_context(int fd, pfarg_load_t *ld);
m_stari{int fd, pfarg_start t *sf);

intp
intp

— = = = = —

m_create_context(pfarg_ctx_t *ctx, void *q, size_t sz) int pfm_stop(int fd);

f
int pfm_restari(int fd);

int pfm_create_evisets(int fd, pfarg_sefdesc_t *s, int n);
int pfm_delete_evisefs(int fd, pfarg_setdesc_t *st, int n);
int pfm_getinfo_evisets(int fd, pfarg_sefinfo_t *it, int n);
int pfm_unload_context{int fd);

int close(int fd);

August 6, 2006

I Perfmon? intertace (2) pir

Unitormity makes it easier to write portable tools

Counters are always exported as 64-bit wide
emulate via counter overtlow interrupt capability it needed

Exports logical view of PMU registers

PMC: configuration registers
PMD: data registers (counters, butfers, ...)

Mapping to actual registers depends on PMU

defined by PMU description kernel module
visible in /sys/kernel/perfmon/pmu_desc/mappings

Possibility to have virtual PMU registers

can map to SW or non-PMU processor/system resource
e.g, PMC256 = ibr0 (IA-64), PMD260 = current->pid

August 6, 2006 12

. (M |
I Perfmon? intertace (3) 3
Same ABI between ILP32 and LP64 modes

all exported structures use tixed-size data types
EM64T, AMD64: 32-bit tools run unmodified on 64-bit kernel

kernel: no 32<->64 syscall argument conversions

Vector arguments for read/write of PMU registers
portable: decoupled PMC/PMD = no dependency knowledge
extensible: no knowledge of # registers of PMU
efficient and flexible: can write one or multiple regs per call

AMDG64 Pentium 4 [ltanium 2

PMC PMD PMC PMD PMC PMD
4> >

PMC PMD

August 6, 2006 13

Basic selt-monitoring perthread session [

nnnnn

pfarg ctx t ctx; int £fd;
pfarg load t load;
pfarg pmd t pd[1l]; pfarg pmc t pc[l];

pfm create context(&ctx); fd = ctx.ctx fd;
pfm write pmcs(fd, pc, 1);

pfm write pmds(fd, pd, 1);

load.load pid = getpid();

pfm load context(fd, &load);

pfm start(fd, NULL);

/* run code to measure */

pfm stop (£d) ;

pfm read pmds(fd, pd, 1);

printf (“total cycles %$”PRIu64”\n”, pd[0].reg value);
close (£fd) ;

August 6, 2006

Per-thread session i
Thread = kernel visible thread (task)

PMU state is saved/restored on context switch
multiple per-thread sessions can run concurrently

Context attachment:
one context per thread
thread must be stopped: leverage ptrace)
can attach at fork or when thread is already running

Context inheritance is never done by kernel
leverage 2.6 ptrace () options (PTRACE O TRACE*)
for many measurements, tools must be aware of new thread

can selectively follow across: fork, exec,pthread create
aggregation done by the tool, it needed

August 6, 2006 15

I System-wide session pr

Monitors across all threads running on one CPU

Uses exact same programming sequence as per-thread
type selected when context is created
monitored CPU is current CPU during pfm_load_context()

System-wide (SMP) built as union of CPU-wide sessions
tlexibility: measure different metric on ditferent CPUs
scalability: strong affinity (processor, cache)

simplicity: easier error handling, no IPI
ready for HW buffer: Pentium 4 PEBS

Mutual exclusion with perthread session
due to some HW limitations
current SW implementation limitations

August 6, 2006 16

Support tor sampling piies
Support for Event-Based Sampling (EBS) in kernel

period p expressed as 2°“~p occurrences of an event

Can request notification when 64-bit counter overtlows
notification = message and is extracted via read ()
support for select /poll/asynchronous notification (SIGIO)

Number ot sampling periods = number of counters
allows overlapping sampling measurements

Optional support for kernel level sampling butter
amortize cost of notification by notifying only when butfer full
butter remapped read-only to user with mmap () : zero copy
periods can be to avoid biased samples
can indicate per PMD: list of PMDs to record/reset on overtlow

August 6, 2006 17

I Custom sampling butter formats g

No single format can satisty all needs
must keep complexity low and extensibility high

Export kernel interface for plug-in formats
easier to port existing tools/infrastructure: OProfile
easier to exploit HW features: Pentium 4 PEBS buffer

Each format provides:
128-bit UUID for identitication (passed on context creation)
A handler function called on counter overtlow

Each format controls:
Where and how samples are stored
What gets recorded, how the samples are exported
When a user notification must be sent to user

August 6, 2006 18

I Existing sampling tormats T

Default format (builtin):
linear buffer, fixed header followed by optional PMDs values

Oprofile format (IA-64 tor now):

10 lines of C, reuse all generic code, small user level changes

N-way sampling format (released separately):
implements split butfer (up to 8-way)
parsing in one part while storing in another: fewer blind spots

Kernel call stack format (experimental, 1A-64):
records kernel call stacks (unwinder) on counter overflow

Pentium 4 Precise Event Based Sampling (PEBS)

100 lines of C, first interface to provide access to feature!

August 6, 2006 19

Event sets and multiplexing (1) piies
What is the problem?

number of counters is often limited (4 on ltanium®2 PMU)
some events cannot be measured together

some measurements require a lot of events:
e,g., cycle breakdown on Itanium®2 CPU requires at least 15 events

Solution:

create sets of up to m events when PMU has m counters
multiplex sets on actual PMU HW

global counts by simple scaling calculation
higher switch rate = smaller blind spots = higher overhead

Kernel support needed to minimize overhead
switching always occur in context of the monitored thread

August 6, 2006 20

Event sets and multiplexing (2) piies

Each set encapsulates the tull PMU state

identitied by user-specitied unique number (0-65535)
sets are placed in ordered list based on their unique number

Timeout-based switching

granularity depends on kernel timer tick (HZ)
actual vs. requested timeout is reported to user

Overtlow-based switching
after threshold of n overflows of a counter
threshold specified per counter and per set
can be used to build cascading counters

Switch mode determined per set, can mix & match

Works with counting sampling

August 6, 2006 21

PMU description module piar

Controls logical = actual PMU register mappings

PMC and PMD mapping description tables
PMC: type, logical name, detault value, reserved bit tields
PMC may have write-checker callbacks

Arch-specitic table contains actual location
e.g., Pentium M: PMCO =PERFEVISELO=MSR@0x 186

Implemented by kernel module
autoloading on context creation, auto-probing on insertion

easier for: support of new HW, maintenance
$ cat /sys/kernel/perfmon/pmu desc/mappings
PMC0:0x100000:0xffcfffff:PERFEVTSELO
PMC1:0x100000:0xffcfffff:PERFEVTSELI
PMDO:0x0:0xffffffffffffff££:PERFCTRO
PMD1 :0x0:0xffffffffffffffff:PERFCTRI

August 6, 2006 22

Pertmon?2 architecture summary
user level
kernel level sysfs syscalls file
kapi default
n-way
smpl E
fmt kernel-call-stack
pmu | res | sets
PMU Oprofile
description :
ctxsw | iIntr PEBS

PMU Hardware

August 6, 2006 23

-
I Security 3

Cannot assume tools are well-behaved

Vector arguments, sampling buffers have max. size
tuneable via /sys

Perthread and system-wide contexts
can only attach to thread owned by caller
each context type can be limited to a users group (via /sys)

Reading of PMU registers
direct access (some arch):limited to self-monitoring
interface access: can only read registers declared used

PMU interrupt tlooding
enough blind spots to ensure kernel makes forward progress
need to add interrupt throttling mechanism

August 6, 2006 24

Kernel-level pertmon2 intertace (KAPI) ™%

Address need to use perfmon2 interface trom kernel
e,g., SystemTap, scheduler

Cannot use system call interface
no task, no file descriptor, no signal, no read (), no mmap ()

File descriptor replaced with opaque descriptor (pointer)
Wiait for notification using a completion structure

Limi’red to system-wide, other functionalities supported

t pfmk_create_context(pfarg_ctx_t *ct, void *q, size_t s, struct completion *c, void **b, void **d)
int pfmk write_pmes(void *d, pfarg_pme_t *pms, int n); int pfmk_restart{void *d);
int pfmk_write_pmds(void *d, ptarg_pmd_t *pmcs, int n); int pfmk_create_evisets(void *d, pfarg_setdesc_t *st, int n);
int pfmk_read_pmds(void *d, pfarg_pmd_t *pmcs, int n); int pfmk_delefe_evisets(void *d, pfarg_setdesc_t *st, int n);
int pfmk_load_context{void *d, pfarg_load_t *ld); int pfmk_getinfo_evisets(void *d, pfarg_sefinfo_t *it, int n);
int pfmk_start{void d*, ptarg_start_t *sf; int pfmk_unload_context{void *d);
int pfmk_stop(void *d); pfmk_close(void *d)

August 6, 2006 25

Status ./

Perfmon2 v2.0 (IA-64 ONLY)

Included in SLES9 and RHEL4
no event sets, no PMU descriptions, perfmonctl () syscall

Perfmon?2 v2.2

compatibility layer with v2.0 on ltanium processors
available as a kernel patch for now, merging with mainline

Supported processors for v2.2
all ltanium processors, incl. Montecito
Intel P6 (P, Plll, Pentium M), architected 1A-32 (Core Duo/Solo)
Intel Pentium 4 (32-bit, EM64T), incl. HyperThreading,
AMD64: all models, 32-bit and 64-bit modes

MIPS: 5K, 20K (Phil Mucci)
PowerPC: Power5 very experimental (IBM)

August 6, 2006 26

Tools using the interface

O |

inmvent

Caliper(HP) 4.0 (tree for non commercial use

Perthread, source level profiles, preset metrics,

ONLY

Java-based standalone GUI (local,remote) or Eclipse plug-in

= HP Caliper — & X
File Edit Connect Project Collect Window Help
ltiE o |0 8% | @
P Projects &£ l = & Collect| CPU Cycles Run (caldera.hpl.hp.com, 7/12/06 5:19 PM) [[29 CPU Cycles Run (caldera.hpl.hp.com, 7/12/06 5:30 PM] I3 = O
gag (i ~ ||Process:is.B (6721) Thread: all Load Module: is. B Function: randlc = o o= L “ 38 oF o o [E [o
= =ZDefault_Project Run Summaryl [l CPU Events [JHistogram
b 2 saved Collectior P =1 Owerview: Percent
b = cPU Cycles Run samples of Grand Totals
b = CPU Cycles Run o 2.28% 4.51
b = CPU Cycles Run Function Disassembly [
b dscPU Cycles Run 0x0Z=0:0 ™ nop.m a 1.83
H F fevt. fx. trunc £7=£9
P (= CPU Cycles Run
2 T nop.i o ;;
b &= CPU Cycles Run —
H getf.=1qg E:
[
d= CPU Events Run i1 nop.m o
b = CcPU Cycles Run iz T sxtd r2=r3 ;;
b (=CPU Cycles Run 0x0200:0 M setf.siqg £15=r2 0.45
- (= CPU Cycles Run PR nop. i u}
) Collection Spe 2 I nop. i o
RUN SuMMan 0x0310:0 ™ nop.m a | 2.91
CPU Events (¢ i1 F fovt. xf £14=f15 L=
- Processes I Load Modules I Functions SourcefDisassemblyl
&= Histogram (C
Application Console
|0 e [l

August 6, 20006

27

Tools using the intertace (2) pf

BEA JRockit 1.4.2 for Linux/iab4:
Dynamic Profile Guided Optimization (DPGO)

PAPI toolkit (U. of Tennessee)

popular toolkit o write portable monitoring tools

ptmon/libptm 3.2 (HP Labs) (GPL/MIT)

ptmon: count, collect profiles perthread or system-wide

libptm helper library: what to measure = values of PMC

all 1A-64 features: opcode match, DEAR,BTB, range restrictions
supports for AMD64, P6

adding Pentium 4 (IBM), MIPS (Phil Mucci)

gtools-0.3 for Linux/ia64 (HP Labs) (GPL)

gtools: statistical system-wide gprot replacement (user, kernel)

August 6, 2006 28

I Current and future activities gt

Mainline integration

submitted for review on lkml

lots of cleanups, simplitications, bug fixes, pert. improvements
Oprotile

ensure continuity of service on non-lA64 HW

Improving Pentium 4 user level support

keep up-to-date with new HW, e.g., Core 2 CPUs
Xen support for PMU virtualization

PMU arbitration layer

allows for better sharing of PMU resources between tools
removes mutual exclusion between system-wide and per-thread

August 6, 2006 29

. |
I Conclusions 3

Monitoring is key to achieve world-class performance
only way to understand how SW and HW interact

Pertmon?2 is the most advanced monitoring interface
custom sampling formats, event set multiplexing, PMU desc.

Perfmon?2 is portable and very extensible

Built a strong community of users, contributors
Intel, AMD, IBM, HP, SGI, Redhat, various universities and

individuals

Once in mainline, expect that better tools will emerge

visit our website at: http://pertmon?2.sourceforge.net

August 6, 2006 30

nnnnnn

